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CONSTRAINTS ON PDF UNCERTAINTIES FROM CDF
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R ecent electrow eak m easurem ents and Pt physics results from CDF which con—
strain the parton density functions (PD F s) are presented. M easurem ents of the W
charge asym m etry, W and Z aswellas gt cross sectionsbased on kr and m idpoint
algorithm w ith up to 1 o~ ! RunII data are discussed.

E lectroweak m easurem ents at the Tevatron provide precision tests of
the Standard M odel (SM ) and searches for physics beyond the SM . T hey
also supply In portant constraints on the PDF s and are a signficant input
to physics at the Large Hadron Collider at CERN . At hadron colliders W
and Z bosons’ hadronic decays are overw helm ed by Q CD background and
the identification takes place through the leptonic decays. W bosons are
selected by dem anding an isolated lepton with Er > 20G &V and m issing
transverse energy ET 1% > 25G eV . The Z boson signature is two isolated
Jeptons w ith opposite charge and E+ > 20G eV which fit the Z m ass.

CDF hasmeasured the inclusive W and Z cross sections in dier ent lep—
ton decay channels and these are summ arized in Figure 1. T he data agrees
with the NNLO predictions'. The dom inant uncertainty is the Iim inosity
(6% ) Pllowed by PDFs (2-3% ) and lepton identfication (1-3% ).

In the electron channel, CDF extended the W (electron channel) cross
section m easurem ent into the very forward region of12 < | |< 2.8 using
a calorin eter seeded tracking. T he analyzed data corresponds to 223pb *
and is com plem entary to the CDF central cross section m easurem ent?.
The m easured cross section is = 2.96 + 0013 (stat) + 0.095(syst) —
0.090 (syst)+ 0.168 (lum ) nb. T he resul is in agreem ent w ith previousCDF
m easurem ents in the central region and w ith theoreticalestin ates. For the
first tine CDF evaluated the central to orward visblk W cross section
ratio. In this way m ost of the lum inosity uncertainty cancels out and the
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Figurel. Summ ary ofthem easured W and Z cross sections and their com parisons w ith
NNLO for all lepton channels as a function of centre of m ass energy.

corresponding ram aining uncertainty is estim ated conservatively to be 1% .
T he experim ental ratio is

(visible,central)

Rexp= ————————— = 0.925+ 0033
(visible,forw ard)

to be com pared to the NLO ratio of acogptances

A
A‘CELE‘D crpg = 09243109 EDF) % 000430 L0 - NN LO)
(forw ard)
A (central +0.010
R aero = 0941473919 PDF)+ 00044M 1O - NN LO).

A (forw ard)

U nlike the inclusive cross sections which are lim ited by the uncertainty
on the lum nosity the uncertainties of the ratio m easurem ent w ill go dow n
w ith statistics and w ill provide In the future a significant constraint on the
PDFs.

M easuram ents of the forward-backward charge asymm etry in pp
W * + X provides in portant input on the ratio of the u and d quark com —
ponents of the PDFs. Since u quarks carry, on average, a higher fraction
of the proton m om entum  (x) than d quarks,aW * produced by ud W *
tends to be boosted in the proton direction (forward) and aW =~ tendsto be
boosted iIn the antiproton direction (packward). This results in a nonzero
forw ard-backw ard charge asymm etry. In the kptonic decay ofthe W bo—
son the longitudinalm om entum of the neutrino can not be experin entally
determ ned and hence the rapidity on the W , vy , is hot directly m easured.
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CDF instead m easures
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where ; is the lepton pseudorapidity. By assum ing the W 1 decays
are described by the Standard M odelV — A couplings, A ( 1) probes the
PDFs. TheV — A couplings in the legptonic W decay cause the ¥pton to
be preferentially em itted opposite to the W boson flight direction. The
Jepton asymm etry, A ( 1), is a convolution of the com peting W production
and V — A decay asym m etries. D irect sensitivity to the PDFswould be in —
proved by reducing the decay asym m etry eect. T he unknown lo ngiudinal
com ponent of the neutrino m om entum is a am aller eect for kp tons w ith
high Er than for those at Iow Er . CDF exploited this for the first tine
by separating the asym m etry m easurem ent into two bins ofelectron E¢ for
W e events. Fora given ., the two Er regions probe dierent vy ,
and therefore x. A s a result, m easuring the electron asym m etry separately
In two bins allow s also a finer probe of the x dependence. Figure 2 show s
the electron asymm etry ©r two dierent E; regions’, based on 170pb~ !
of RunII data. P redictions from CTEQ? and M RST> PDFs, which fit the
previous CDF results’, are shown for com parison.
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Figure 2. The m easured electron asymm etry, A ( ), is plotted and predictions from
theCTEQ 6.IM (solid) and M RST 02 (dashed) PD F s are com pared usihng NLO RESBO S
calculation. Left: 25 < E¢ < 35G eV ;Right: 35< E < 45GeV .

Anotherway to in prove the direct sensitivity to PD F's is to reconstruct
the W boson rapidity. CDF is currently developing a new analysism ethod
which directly reconstructs the W rapidiy from W e data. The new
m ethod detem ines the neutrino longiudialm om entum by constraining
the W mass, up to a two-fold ambiguity. This ambiguity can be partly
resolved on a statisticalbasis from the known V — A decay distribution for
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the centre ofm assdecay angke  and from theW * production cross section
as function of yy , d/dy w . The new method is an ierative M C based
procedure and first prelin inary studies show that it has sm aller statistical
errors and a greater sensitivity to the PDFs than the J¥pton asymm etry
m easuram ents.

Figure 3 show s the ratio of the inclusive gt production cross section
using the Iongitudinally invariant kt algorithm’ (left) and the m dpoint
cone algorithm 8 (right) for ®ts with pr > 54GeV and 16 < fy| < 2.1
over theory. The kt algorithm based m easurem ents are fully unfolded to
the hadron level and the data is com pared to pQCD NLO calculations as
detem ined using JETRAD . T he theoretical predictions are corrected for
underlying event and hadronization eects. Them idpoint ® tm easurem ents
are ully unfolded to the parton level. T he data is com pared topQ CD NLO
calculations as determm ined using EK S. The $t cross section m easurem ents
from both algorithm s w ill place im portant constraints on the gluon PDF

at high x.
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Figure 3. Ratio of m easured and theoretical inclusive ¥t cross sections using kt (left,
0.98 b~ l) and m idpoint (right, 1.04 o~ 1) algorithm as function of gt Pr forl.6< Jyl<
21.
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